Exercise  Problem 17  

 

你好,这里是我的个人网站数学分析的每周一题栏目(数学分析每周一题,其中数学分析指的是数学中的分析学, 主要包括微积分,实分析,复分析)  ——————Alina Lagrange

 

Prove that limδ0fKδf=0. where Kδ is a family of good kernels.

 

Proof.

 

fKδf=Rn|fKδ(x)f(x)|dx=Rn|Rnf(xy)Kδ(y)dyf(x)|dx=Rn|Rn(f(xy)f(x))Kδ(y)dy|dxRnRn|f(xy)f(x)||Kδ(y)|dydx=RnRn|f(xy)f(x)||Kδ(y)|dxdy=|y|Rn|f(xy)f(x)||Kδ(y)|dxdy    +|y|>Rn|f(xy)f(x)|=I1+I2. Then for I1, I1=|y||Kδ(y)|Rn|f(xy)f(x)|dxdy=|y||Kδ(y)|f(xy)f(x)1dxdy where >0. By the continuity of the Lebesgue integral i.e. ε>0,ζ>0, when |y|<ζ, f(xy)f(x)1<ε. Hence  I1ε|y||Kδ(y)|dyMε. Then for I2, I2=|y|>Rn|f(xy)f(x)||Kδ|dxdy2fL1(Rn)|y|>|Kδ(y)| By the properties of the good kernel, we have ε>0,θ>0 s.t. when δ<θ,|y|>|Kδ(y)|<ε. Then we obtain fKδf<(M+2f)ε. Hence limδ0fKδf=0.