\(\mathrm {Exercise \ \oplus \ Problem } \ 1 \)   |
 
\( \qquad \)你好,这里是我的个人网站数学分析的每周一题栏目(数学分析每周一题,其中数学分析指的是数学中的分析学, 主要包括微积分,实分析,复分析) \(\qquad \ \)——————Alina Lagrange 
Prove that : \[ \frac{d \hat f (\xi) }{ d\xi } = \widehat {-2\pi i x f(x) }\] 
\(\mathcal{P}roof. \)
Since \[ \frac{d \hat f (\xi) }{ d\xi }=\lim_{h\to 0 } \int_\mathbb R f(x)e^{- 2\pi i x \xi } \cdot \frac 1h \cdot( e^{-2\pi i x h}-1 ) dx \] as \( {h\to 0 } \) \[ \left | \frac{d \hat f (\xi) }{ d\xi }-(\widehat {-2\pi i x f(x) } ) \right | = \left | \int_\mathbb R f(x)e^{- 2\pi i x \xi } \cdot \left [ \frac 1h \cdot( e^{-2\pi i x h}-1 ) +2\pi i x \right ] dx \right | \] \( \forall \varepsilon >0 \), Since \(f(x),xf(x) \in \mathcal S (\mathbb R ) \),there exists \( N \) such that \( \int _{|x | \geq N } | f(x)| dx <\varepsilon \) and \( \int _{|x | \geq N } | xf(x)| dx <\varepsilon \)